
<Insert Picture Here>

Architecting Applications for Scalability, Performance

and Availability

Oracle Coherence Workshop

Copyright 2007 2

Agenda

• Understanding “Scalable Performance”

– Scalability Refresher

– Scalability Approaches

• Scaling the Application Tier

– Scaling Without Coherence

– Scaling With Coherence

– Why Is Scaling Out the Application Tier Hard?

– Is Clustering Always the Answer?

• Coherence’s Approach to Scalability

– Coherence Cache Topologies

• Q&A

Copyright 2007 3

<Insert Picture Here>

Understanding Scalable
Performance

Scalability Refresher

Copyright 2007 5

Performance is Like a Ferrari

• Performance is like a Fast Car

– Designed for speed (not capacity)

– Improve engine and components (scale up)

Copyright 2007 6

Scalability is Like a Train

• Scalability is like a Locomotive

– Designed to handle load and capacity

– Add more cars and engines (scale out)

Copyright 2007 7

Scalability and Performance don’t always

come together

• You can’t just add them together!

They have to be designed.

Copyright 2007 8

Scalability and Performance – Sometimes

They Do Come Together

• Again – They have to be designed.

Copyright 2007 9

Application Scalability

– Scaling the Application-Tier is difficult

– If it was easy it would be an IDE option

– Scalability is a design option

• Requires knowledge, care and experience

• Developers have the “option” to consider building it in!

• It’s not an IDE option

– Coherence is scalability infrastructure for the application-tier

Not possible!

Copyright 2007 10

What is Scalability?

• Scalability:

“The degree to which the performance of a system

improves when more resources are added”

• Linear Scalability:

“When resources are increased by a factor of n,

system performance improves by the factor of n”

• Predictable Scalability:

“The ability to know in advance of adding resources

the degree to which a system will scale”

Copyright 2007 11

Scalability Approaches

Approach How Advantages Disadvantages

Vertical

“scaling-up”

Increase resources

in existing server(s)

� Relatively simple process

(can be achieved overnight)

� Transparent to system

architecture and development

� Comparatively expensive

hardware (niche)

� Limited Scalability (physical

limits typically encountered)

�Increases cost of failure

Horizontal

“scaling-out”

Add more servers � Comparatively inexpensive

hardware (commodity)

� Virtually unlimited

scalability possible (typically

greater than scale-up

approach)

� Applicable only when a

system is designed to “scale-

out”

� May require months of

rework to achieve

� Scalability may be limited by

“network”

� Requires additional

administration

Copyright 2007 12

Developers and Scalability

Be aware!

– Poorly designed algorithms and data structures may not scale

– Scalability is often a non-functional requirement

– Scalability is often “left to last” and not “designed in up-front”

– Developers tend to assume that their system is scalable

– Developers are often surprised that their system is not scaling

– Developers tend to assume there is a quick fix for scaling

– Developers may assume Coherence is a drop in solution

– Coherence may not be a solution (often it is… more later)

– While a system may be scalable, often operational costs are

not taken into account (it’s someone else’s problem)

Copyright 2007 13
13

What do we mean by “Scalable”?

• High scale

– Scales readily to ~100 servers

– Practical limit of ~1000 servers

– Support for thousands of simultaneous clients

– Multiple Sites

– Across continents & globe

• Easy scale

– Just plug in additional machines

– While system is running

– No need for manual application partitioning

Copyright 2007 14
14

What do we mean by “Performance”?

• Instant access
– Clients can maintain coherent data in local memory

– Faster than disk or even network

• Instant awareness
– Clients can subscribe to real time events

– Notification to application servers or even desktops

• Parallel data processing
– Clients can push processing to the servers

– No data movement results in very high performance

Copyright 2007 15
15

Defining “Scalable Performance”

• Performance describes the elapsed (“wall clock”)

time that it takes to execute an operation

• Scalability describes how a system behaves given

an increasing number of simultaneous operations

– In scalability terms, predictability is more important than the

raw performance exhibited for any single operation

• Scalable Performance describes a system that

can scale predictably under load, and can also

execute operations quickly

– Provides predictability to the cost of scaling up an application

Copyright 2007 16

<Insert Picture Here>

Scaling the Application Tier

(Without Coherence)

Copyright 2007 17

Scaling the Application-tier

(without Coherence)

Approach How Advantages Disadvantages

Scale-Up

“It’s an

infrastructure

problem”

� Buy Big Boxes

� Increase Resources (cpu,

memory, hdd capacity, speed

and network, etc)

� By specialized hardware

(Azul, Infiniband…)

� Simple (overnight)

� No development

� No impact on internal

design

� Expensive

� Will hit physical limits

� Will have to redesign

at limit

� Non-graceful

deterioration at limit

� Stop, Add, Restart

required to scale

Copyright 2007 18

Scaling the Application-tier

(without Coherence)

Approach How Advantages Disadvantages

Stateless

Scale-Out

“Push state

scale-out into

lower Data

Source layer”

“It’s the

DBA’s

problem”

� Make application stateless

(eg: stateless sessions)

� Use lots of stateless servers

� Use load-balancing

� Use “big” and “scalable” Data

Source to ensure application

state scale-out

� Easy to develop (not

overnight, but relatively

simple as no state is

managed)

� Scale-out is easy, just

add more servers

� Only scales to match

underlying Data Source

performance

� When underlying limit

is reached, have to

redesign

� Network bottlenecks

experienced as data is

moved between layers

Copyright 2007 19

Scaling the Application-tier

(without Coherence)

Approach How Advantages Disadvantages

Caching

“Keep recent

copies of

state”

“We’ll save

the DB and

DBA by

caching”

� Application keeps local

copies (in memory or on local

disk) of recently / commonly

used state

� Seems simple

� Reduces Data Source

and Network load

� Significant application

performance

improvements

� Maintaining

consistency of data

between Local and Data

Source instances can be

difficult

� Require “messaging

infrastructure” to ensure

coherency across a

cluster (and application

development)

� Typically applicable to

“read only” applications

and not “write a lot”

applications

� Easy to get wrong

Copyright 2007 20

Scaling the Application-tier

(without Coherence)

Approach How Advantages Disadvantages

Use an

Application

Container

“Our magical

clustered

container will

scale our

application

infinitely”

� Believe the vendors & the

marketing

� Follow a “scalability

paradigm”

� Use a “Clustering Container”

… It scaled the “Pet Store”

linearly, therefore our X

application will also scale

linearly (where X ≠ “Pet Store)

� Simple

� Well documented and

communicable paradigm

� Easily scale

development team

� Typically scales in-

the-small

� Usually relies on

“scale-up” rather than

“scale-out”

� Requires specialized

skills or products (out

side of the standard

paradigm) to really scale

� Clustering is primarily

about High-Availability,

not Scalability!

Copyright 2007 21

Scaling the Application-tier

(without Coherence)

Approach How Advantages Disadvantages

Manually

partition the

Application

and / or

Data

“Scalability is

easier in

small bits”

� Break the application domain

into independently scalable

components

� Have separate teams deal

with their own components

� Use “pools” of Services to

perform work

� Use load-balancing to scale-

out

� Seems simple

� The problem isn’t as

big as it was before

� Some components

may actually scale better

by themselves

� Often difficult to

decompose the

application

� What’s good for one

component, is often bad

for another (eg: if you

need ‘joins’)

� Typically introduces

new bottlenecks (sharing

information between

components)

� Managing an

application composed of

many independent parts

is more complex!

Copyright 2007 22

Scaling the Application-tier

(without Coherence)

• In summary…

“Solving application-tier scalability is either;

a). someone else’s problem, or

b). involves the complex process of partitioning

and managing data, services and

coherency across a collection of servers.”

• Coherence provides developer solutions for b) to

enable predictable application scale-out

Copyright 2007 23

<Insert Picture Here>

Scaling the Application Tier

(With Coherence)

Copyright 2007 24

Scaling the Application-tier with

Coherence

Approach How Advantages Disadvantages

Use

Coherence

to share and

manage

objects

(application

state)

“Coherence

is

responsible

for my

objects”

� Introduce Coherence libraries

into Application(s)

� Use Coherence

NamedCache API (derived from

java.util.Map) to store

application state

� Start multiple Coherence-

enabled processes to scale-out

(load balance) objects (data)

� Simple

� Transparent and

Automatic Partitioning of

Data

� RemoteException-free

distributed computing

� Itself is massively

scalable

� Displaces other

technology (messaging)

� Extremely

configurable

� New paradigm

� People tend to use old

patterns with it – that

don’t work or are overly

complicated

� Configuration isn’t

easy (at first) mainly

because of the new

paradigm

� Takes time for people

to “trust” the technology

� Extremely

configurable

Copyright 2007 25

<Insert Picture Here>

Scaling the Application Tier

Why Is Scaling-out the Application-Tier Hard

Copyright 2007 26
26

“Scalable Performance” is hard…

• Scalable performance is the black art of making

something go fast while also being able to handle

more load in a predictable fashion.

• Often, scalability features will conflict with raw

performance features

– Bite the bullet up front: Architect scalability from the get-go

• It is tough to try to decide (up front) between

scalability and raw performance

– If scalability could be necessary, it needs to be architected in

– Most applications don’t actually need to scale, though!

Copyright 2007 28

Why Scaling-out the

Application-Tier is Hard!

• However…

“It’s extremely difficult to write software that ensures

an unpredictably (dynamically) growing collection of servers

connected by an unreliable network

can continuously work together

without losing information (or work)

in a manner that itself is linearly scalable”

• Significance…

– Achieving all of these things in the same product

– Working together means “consensus” has to be maintained!

Copyright 2007 30
30

Obstacles to Scale

• Resource Usage: Later Tiers

– There is a cost when a tier invokes a later tier

– Collocation of tiers reduces inter-tier communication

– Applications that have to talk to the database on each request

will suffer from scalability problems

– The Database tier is difficult and expensive to scale; it is

difficult to scale a database server to more than a single host,

and it becomes exponentially more expensive to add CPUs

– Database servers scale sub-linearly at best with additional

CPUs, and there is a CPU limit

Copyright 2007 31
31

Obstacles to Scale (Summary)

• Architect so that the application is CPU-or memory-

bound, and that the bottleneck is in the application tier

at the latest

• For high-scale applications, make sure that the

bottleneck will never be the data source (mainframe

service, database)

• Benefit: You can use server farms and server clusters

to scale an application almost linearly and with a

predictable cost per user

Copyright 2007 32
32

Is Clustering Always the Answer?

• Clustering enables multiple servers or server

processes to work together

• Clustering can be used to horizontally scale a tier, i.e.

scale by adding servers

• Clustering usually costs much less than buying a

bigger server (vertical scaling)

• Clustering also typically provide failover and other

reliability benefits

Copyright 2007 33
33

Clustering Categories

• Master/Slave: For availability

• Parallel: For scalability, e.g. stateless web server
farms

• Centralized: Single server for coordination (can
represent bottleneck and/or SPOF)

• Hierarchical: Multi-tiered centralized model

• Peer-to-Peer: Servers work independently, but have
knowledge of and direct access to the entire cluster
(cooperative worker model)

Copyright 2007 34

Traditional Scale-Out Approaches…

#1. Avoid the challenge of maintaining consensus

– Opt for the “single point of knowledge”

#2. Have crude consensus mechanisms, that typically

fail and result in data integrity issues (including loss)

Client + Server Model
(Hub + Spoke)

Master + Worker Model
(Grid Agents)

Active + Passive
(High Availability)

Copyright 2007 35

Traditional Scale-Out Approaches…

• Have unbalanced / unfair load and task management
– Some servers have greater system responsibility than others

• Have Single Points of Bottleneck (SPoB)

• Have Single Points of Failure (SPoF)
– “Micro outages” are magnified as you scale-out

• Exhibit Strong Coupling to Physical Resources
– Software completely dependent on individual physical servers

• Require specialized deployment and operation for

individual Resources
– Some servers require “special attention” to operate

• Traditional scale-out approaches limit

– Scalability, Availability, Reliability and Performance

Real-World Feedback

Copyright 2007 36
36

Best Scale Out Approach – What Do
We Really Need?

• Scale Out
– Something that Performs Better when you scale out

– Something that does us makes us not choose between stateless
and stateful approaches

• Clustering
– Something that takes advantage of peer to peer clustering (no
master/slave, of hub)

• Clustered Caching
– Something that also clusters objects across nodes (cache clustering)

• Finally – Scalable Performance:
– We Need Clustering, Scaling and Caching to be all Possible at

the Same Time

– We Need all 3: Reliability, Performance and Scalability, without
sacrificing any one.

Copyright 2007 37
37

Best Scale Out Approach

• Discussion on how Coherence Does This is

Next….

– Clustering, Scaling and Caching to be all Possible at the

Same Time

– Reliability, Performance and Scalability, without

sacrificing any one.

Copyright 2007 38

<Insert Picture Here>

BREAK

Copyright 2007 39

Q&A

<Insert Picture Here>

